Цифровые технологии XXI века: цифровая рентгенография
 
ДЛЯ ОБЩЕЙ
МЕДИЦИНЫ
 
 
 
ОБОРУДОВАНИЕ
ДЛЯ СТОМАТОЛОГИИ
 
 
 
ВЕТЕРИНАРНОЕ
ОБОРУДОВАНИЕ
 


 
 
 
ЛИДЕРЫ ПРОДАЖ
 
 
Стоматологический визиограф Gendex GXS-700
 
 
Стоматологический томограф Kodak CS 9000 3D
 
МРТ томограф Siemens Magnetom Symphony 1.5T
 
 
 
 
 
 
 
 
 

Малодозовая цифровая рентгенография в современной медицине

 
 
Государственное реформирование здравоохранения поставило перед лечебными учреждениями принципиально новые задачи: скорость и качество получения и обработки информации стали важнейшим условием повышения уровня оказываемой медицинской помощи. Эту задачу нельзя решить без внедрения новых информационных технологий. Основным приоритетом развития лучевой диагностики на сегодняшний день является внедрение в практику цифровых технологий.
 
Цифровая рентгенография обладает рядом существенных преимуществ по сравнению с аналоговыми методами. Это отсутствие пленки и реактивов, экономия площади, широкие возможности по обработке снимков, автоматизация данных. Кроме того, использование цифровой диагностической техники позволяет объединить диагностические кабинеты и рабочие места лаборантов, врачей в единую информационную систему лечебного учреждения. В настоящее время лечебно-профилактические учреждения (ЛПУ) используют 2 типа информационных систем: общебольничные системы – автоматизация работы ЛПУ как предприятия и радиологические информационные системы (РИС) – обработка, хранение и передача диагностических изображений. С целью оказания врачами оперативной квалификационной консультации пациентам, находящимся на расстоянии могут использоваться телемедицинские сети, к которым подключается РИС ЛПУ. Особенностью таких сетей является способность передачи рентгеновских снимков на большие расстояния в реальном времени без искажений и с соблюдением строгой конфиденциальности. Организация телемедицинских радиологических сетей позволит вывести раннюю диагностику на новый качественный уровень.
 
Создание цифровых информационных систем в диагностической медицине обеспечивает сохранение максимума информации о больном и ее рациональное и эффективное использование в клинической практике и для научных целей. С целью повышения качества лучевой диагностики хирургических заболеваний в отделении лучевой диагностики Института хирургии им. А.В. Вишневского используется автоматизированная радиологическая информационная система (PACS), обеспечивающая беспленочную систему получения, обработки, передачи и архивирования изображений в стандартном формате DICOM. Единое медицинское информационное пространство предоставляет возможность оказания дистанционной высококвалифицированной помощи ведущих медицинских центров, что в конечном итоге позволяет повысить качество и снизить себестоимость обслуживания пациентов.
 
  Малодозовая цифровая рентгенография органов грудной клетки получает все более широкое распространение. Её преимуществом является стандартно высокое качество изображения, не зависящее от особенностей фотохимической обработки пленки. Цифровые изображения имеют значительно более широкий динамический диапазон, позволяющий одновременно анализировать как легочную ткань, так и плотные структуры средостения. В зависимости от типа пленочного флюорографического аппарата обследуемый получает дозу от 0,3 до 1,99 мЗв. Эффективная доза при проведении скрининговых исследований не должна превышать 1 мЗВ. При проведении цифровой рентгенографии эффективная доза составляла от 0,004 до 0,2 мЗв. Существенное снижение дозы облучения при выполнении рентгенограммы на аппарате высокого разрешения позволит свести риск облучения к безопасному минимуму при оценке эффективности лечения в динамике больных туберкулезом легких и осуществлять динамическое наблюдение за состоянием диспансерных пациентов из групп повышенного риска с любой необходимой периодичностью.Кроме того, цифровое изображение может быть подвергнуто дополнительной обработке с помощью математических программ, что в ряде случаев повышает информативность исследования.
 
В настоящее время ряд исследователей изучают и проводят сравнительную оценку различных типов цифровых рентгенографических систем для определения их диагностических возможностей в клинической практике, а также для определения эффективной дозы, получаемой пациентом при исследовании органов грудной клетки. Современные системы прямой рентгенографии позволяют снижать дозу до 50%.
 
Процесс перехода на цифровой рентген аппарат в Западной Европе прошел несколько этапов и начался с систем оцифровки пленочных рентгенограмм, на смену которым достаточно быстро пришли системы компьютерной рентгенографии с технологией запоминающих люминофоров. Затем появился плоскопанельный детектор рентгеновского излучения и, соответственно, сканирующие рентгенографические системы. Четвертым этапом перехода к цифровой технологии визуализации стало внедрение в клиническую практику полноформатных рентгеновских систем на основе матричных детекторов, которые в настоящее время преобладают на мировом рынке.
 
В настоящее время практически все современное диагностическое оборудование в лучевой диагностике поддерживает единый формат DICOM, который может использоваться как протокол передачи изображений, при этом возможна пересылка снимков через сеть интернет. В случае наличия медленного интернета или больших объемов данных для передачи, полезным инструментом оказывается сжатие изображений, при котором сохраняются преимущества формата DICOM. Использование алгоритма сжатия без потерь (Zip) позволяет сократить время передачи объемных КТ-исследований с количеством срезов более 1000 в 3,8 раза. Применение алгоритмов сжатия с потерями приводит к сокращению времени пересылки в 5,8-14,8 раза, использование таких алгоритмов целесообразно при проведении телерадиологических консультаций в реальном времени.
 
Для постановки окончательного диагноза или для контроля состояния пациента в динамике врачу лучевой диагностики приходится не только анализировать изображения, но и обращаться к архивным данным. Использование компьютерных технологий и информационных систем: Picture Archiving and Communication System (PACS), Radiological Information Systems (RIS), Hospital Information Systems (HIS) в лучевой диагностике позволяет осуществлять мультимодальное совмещение медицинских изображений, хранить их в сжатом цифровом виде в централизованном архиве, а также считывать и пересылать рентгеновские снимки на любой компьютер по различным информационным сетям, включая интернет. Необходимость внедрения информационных технологий в клиническую практику неоспорима на сегодняшний день. Применение систем архивирования, передачи и обработки изображений (PACS, RIS) в работе отделения лучевой диагностики ЛПУ позволяет обеспечить быстрый доступ к информации о пациенте различным специалистам, представить медицинские изображения в цифровом виде, повысить производительность и эффективность работы всего ЛПУ.
 
Положительный опыт оснащения большинства крупных европейских клиник системами архивирования и передачи медицинских изображений (PACS), широкое использование компьютерных анализаторов в медицинской визуализации и рабочих станций, а также ведение историй болезни в электронном виде (Bellon E. et al, 2005) позволяет предположить в скором времени внедрение данных систем в отечественное здравоохранение.
 
Одной из основных тенденций развития медицинской визуализации является активное внедрение цифровых технологий, замены аналоговых аппаратов для лучевой диагностики на цифровые установки. Эти изменения также коснулись и традиционной рентгенологии.
 
Переход к оцифровке рентгеновских снимков способствует тому, чтобы цифровая флюорография легких заняла свое ведущее место в первичной диагностике легочной патологии, и при скрининге, и в обычных клинических ситуациях. Возможности компьютерной обработки рентгеновских изображений позволили значительно повысить выявляемость патологии органов грудной клетки при проведении профосмотров.
 
В последние годы большое внимание уделяется компьютерному анализу медицинских изображений при заболеваниях легких. В частности, созданы компьютерные программы, позволяющие выявлять мелкие очаговые образования в легких и, тем самым, повышающие диагностическую эффективность цифровой рентгенографии.На цифровых изображениях убедительно выявляются мелкие, компактные, изолированные петрификаты в парааортальных лимфатических узлах, а также в периферических лимфатических узлах шеи и подмышечной области, которые при проекционной пленочной рентгенографии по разным причинам не всегда находят отображение. Важное практическое значение приобретает возможность обнаружения на цифровых снимках "малых" форм. В особенностях отображения очагового туберкулеза легких количество очаговых теней, как правило, тоже определяется большее, чем на обзорных рентгенограммах и флюорограммах. Кроме того, в США в связи с относительно низкой стоимостью и пониженной лучевой нагрузкой в будущем планируется использовать цифровой рентген в сочетании с компьютерным анализом изображений вместо КТ при скрининговом исследовании органов грудной клетки для выявления бронхогенного рака.
 
Значительная часть населения России подвергается рентгенологическим исследованиям с целью диагностики или профилактики различных заболеваний. Установлено, что более 70% заболеваний распознается с помощью рентгенологического метода, необходимого для обнаружения и определения степени распространенности патологического процесса, а также для контроля эффективности лечения. Поэтому усилия ученых направлены на создание рентгеновских аппаратов с пониженной лучевой нагрузкой. К ним относятся малодозовые цифровые рентгеновские аппараты. Необходимо оптимизировать лучевые исследования для уменьшения лучевой нагрузки на пациента при одновременном сохранении качества медицинских изображений.
 
В настоящее время накоплен опыт эксплуатации цифровых рентгеновских установок и флюорографов в лечебно-профилактических учреждениях различного профиля. Преимуществами цифровой флюорографии являются: снижение лучевой нагрузки на исследуемого (в 10-30 раз), высокая информативность, уменьшение стоимости исследования, возможность хранения данных на всех видах носителей информации и передачи через интернет, простота и высокая скорость получения изображений и их высокое качество. Сравнение возможностей в выявлении нормальных анатомических структур и патологических рентгенологических симптомов показывает, что цифровые изображения имеют преимущество, которое проявляется в превосходном разрешении по контрастности в широком динамическом диапазоне.
 
Дополнительными преимуществами цифровой радиографии являются возможности применения гистограммного анализа и цветового кодирования. Цветовое кодирование может быть выполнено на основе техники трапециоидов. При этом различные ткани получают разную окраску, что позволяет проводить их визуальную дифференцирововку.
 

Малодозовые цифровые рентген аппараты в лучевой диагностике

Экологическое благополучие населения является одной из важнейших задач современного индустриального общества. Среди всех экологических проблем, стоящих сейчас перед государством, радиационный фактор занимает одно из ведущих мест. Рассматривая радиационный фактор, необходимо отметить, что среди всех видов облучения населения источниками ионизирующего излучения 17% вклада в него обусловлено медицинской компонентой. В целом считается, что польза от применения медицинского облучения превышает вред от его использования, поэтому оно не нормируется в отличие от профессионального облучения. Диагностическое облучение характеризуется довольно низкими дозами, получаемыми каждым из пациентов (типичные эффективные дозы находятся в диапазоне 1-10 мЗв), что в принципе вполне достаточно для получения требуемой клинической информации. Эффективная доза при рентгенографии составляет от 1 мЗв до 0,6 мЗв и для КТ от 0,2 мЗв до 12 мЗв.
 
 
Сканирующий метод исключает регистрацию рассеянного излучения при формировании рентгеновского изображения, поэтому, рентгенологическое обследование, проведенное путем сканирования пациента узким коллимированным лучом, с прямым преобразованием энергии -кванта в электрический сигнал, позволяет уменьшить лучевую нагрузку на пациента в десятки раз и повысить диагностическую эффективность обследования по сравнению с традиционной пленочной технологией. Стратегия снижения дозовых нагрузок на население при проведении рентгенологических процедур должна предусматривать поэтапный переход в рентгенологии на сканирующие технологии получения информации и, прежде всего, при проведении профилактических процедур, доля которых в общем объеме рентгенологических исследований составляет около 33%. Реализация в полном объеме этих предложений по снижению дозовых нагрузок позволит уже в ближайшие 2-3 года снизить эффективную среднюю годовую дозу облучения на одного человека до 0,6 мЗв. При этом суммарная годовая коллективная эффективная доза облучения населения уменьшится почти на 31000 чел.-Зв, а число вероятных случаев возникновения злокачественных заболеваний (смертельных и не смертельных) снизится за это период более чем на 2200.  
 
В системах сканирующего типа рентгеновский пучок проходит через узкую щель коллиматора прежде, чем попадает на линейку детекторов. В сканирующих аппаратах получение информации с одной строки происходит максимум за 5-6 мс, что даже меньше времени формирования изображения в цифровых флюорографах на основе ПЗС-матрицы. Преимущество сканирующих систем с узким веерным рентгеновским пучком состоит в том, что в них практически отсутствует вредное влияние рассеянного излучения на качество изображения, а это, в свою очередь, позволяет значительно снизить дозовую нагрузку на пациента. Ряд авторов отмечает, что сканирующая рентгенография на сегодняшний день является наилучшим решением для практической рентгенодиагностики с точки зрения достижения приемлемого баланса цена качество для цифрового приемника.
 
Таким образом, цифровые рентген аппараты обладают рядом преимуществ над традиционными аналоговыми аппаратами, что связано с высоким качеством и возможностью компьютерной обработки получаемых изображений, хранением полученной информации в электронном виде, возможностью передачи рентгеновских снимков через интернет и значительным снижением лучевой нагрузки на пациента.
 
Цифровые рентген аппараты — высокотехнологичное оборудование для соверменной медицины!
 
 
 
 
 
Пн Вт Ср Чт Пт Сб Вс
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
 
 
 

Цифровой рентген Инновационное оборудование для современной медицины и ветеринарии c доставкой по Москве и всей России: где купить цифровой рентген-аппарат, CR-систему, DR-систему, плоскопанельный детектор, стоматологический визиограф (радиовизиограф), дентальный рентген аппарат, панорамный ортопантомограф, портативный рентген, аппараты МРТ, оцифровщик рентгеновских снимков, а также ветеринарный дигитайзер и другое современное ветеринарное оборудование
 
 
Доставка оборудования по всей Российской Федерации: Москва, Санкт-Петербург (СПБ), Екатеринбург (ЕКБ), Нижний Новгород, Новосибирск, Самара, Саратов, Казань, Архангельск, Омск, Ростов-на-Дону, Уфа, Красноярск, Краснодар, Челябинск, Хабаровск, Ярославль, Симферополь, Севастополь или другой город в Крыму, Махачкала, Сочи, Владивосток, Оренбург, Ульяновск, Курск, Белгород, Томск, Новокузнецк, Кемерово, Астрахань, Калининград или любой другой город РФ
 
Вся информация на сайте cifrorentgeny-viziografy.ru не является публичной офертой (ст. 437 ГК РФ)
Цифрорентген Контакты:
Адрес: улица Нагатинская, 3 117105 Москва,
Телефон:+7 800 500 93 58, Электронная почта: info@cifrorentgeny-viziografy.ru